
T. Seidmann Distributed Operating Systems

Concurrent processes and programming (cont’d)

Language mechanisms for synchronization

A concurrent language extended from a sequential language

adds additional constructs to provide:

• Specification of concurrent activities

• Synchronization of processes

• Interprocess communication

• Nondeterministic execution of processes

Synchronization mechanisms and language facilities

Synchronization methods Language facilities

Shared-variable synchronization

semaphore shared variable and system call

monitor data type abstraction

conditional critical region control structure

serializer data type and control structure

path expression data type and program structure

Message passing synchronization

communicating sequential processes input and output

remote procedure call procedure call

rendezvous procedure call and communication

1



T. Seidmann Distributed Operating Systems

Message passing synchronization

• The only means of communication in distributed systems

• Implicit synchronization: messages can be received only after

they have been sent

• Non-blocking send, blocking receive: asynchronous message

passing

• Blocking send, blocking receive: synchronous message passing

Asynchronous message passing:

• Is an extension of the semaphore concept to distributed

systems

• Send operations assume that the channel has an unbounded

buffer

• Example: pipe and socket

Synchronous message passing:

• No buffering of messages in the communication channel

• rendezvous between send and receive

• Examples: Communication Sequential Processes (CSP),

Remote Procedure Call (RPC) - asymmetrical communication,

Ada rendezvous - symmetrical communication

2



T. Seidmann Distributed Operating Systems

Interprocess communication and coordination

• Distributed IPC and process coordination are based on message

passing

• Dependent on the ability to locate communication entities:

role of the name service

• Three fundamental message passing communication models:

– message passing

– request/reply (RPC)

– transaction communication

• Distributed process coordination examples:

– distributed mutual exclusion

– leader election

Message passing communication

• Messages are collections of data objects

• Their structure and interpretations are defined by the peer

applications

• Communicating processes pass composed messages to the

system transport service

3



T. Seidmann Distributed Operating Systems

interprocess communication

transaction

request/reply (RPC)

message passing

network operating system transport connection

communication network packet switching

Basic communication primitives:

• send(destination, message)

• receive(source, message)

where source or destination = (process name, link,

mailbox, port)

process name (global PID) - direct communication primitive

link (connection) - direct communication primitive

mailbox - indirect communication primitive many-to-many

port - indirect communication primitive many-to-one

Message synchronization and buffering:

4

sender source
kernel

destination
kernel

message

ack

network receiver

request

reply

2

7

1

8

3

6 5

4



T. Seidmann Distributed Operating Systems

1. Nonblocking send: 1+8

2. Blocking send: 1+2+7+8

3. Reliable blocking send: 1+2+3+6+7+8

4. Explicit blocking send: 1+2+3+4+5+6+7+8

5. Request and reply: 1-4, service, 5-8

At the receiving site blocking is quite explicit: blocked for

message arrival

Implicit buffer space:

• in sender’s kernel

• in receiver’s kernel

• in the communication network

Pipe and socket APIs

• Used in both UNIX and Windows

• Pipes: implemented with finite-size, FIFO byte stream buffer

maintained by the OS kernel

– created with the pipe system call, which returns two

descriptors (one for writing, one for reading)

– data in pipes are uninterpreted byte sequences

– are anonymous

5



T. Seidmann Distributed Operating Systems

– variation: named pipes - use the semantics of ordinary

files for opening, communicating processes need not exist

concurrently

– use limited to a single domain within a common file system

(except named pipes under Windows)

• Socket is a communication endpoint of a communication link

managed by the OS’s transport system

– modeling network I/O based on conventional file I/O

– created by the socket system call

– used for file-oriented read/write operations

– used for communication-specific send/receive operations

– communicate over various network protocols, for example

TCP, UDP, (raw) IP

– socket descriptor is a logical communication endpoint

(LCE); it must be associated with a physical communication

endpoint (PCE): for example host network address and

transport port in case of TCP or UDP

6



T. Seidmann Distributed Operating Systems

Connectionless socket communication:

peer process peer process

endpoint (socket, LCE)

logical communication

physical communication

endpoint (PCE)

logical communication

endpoint (socket, LCE)

physical communication

endpoint (PCE)

socket

bind

socket

bind

sendto / recvfrom

7



T. Seidmann Distributed Operating Systems

socket

Connection-oriented socket communication:

Server Client

socket

bind

listen

accept

read

write

write

read

connect

request

reply

rendezvous

8



T. Seidmann Distributed Operating Systems

Secure Socket Layer

Goals:

• Privacy in socket communication

• Integrity of socket data

• Authenticity of servers and clients using asymmetric public-

key cryptography

SSL consists of two protocols:

• Handshake protocol

– establishing the write keys and MAC secret (message

authentication check) → master secret
– Validating the authenticity of clients and servers

– Client of the Record Layer protocol

• Record Layer protocol

– Fragmentation, compression/decompression

– Encryption/decryption of message records

9



T. Seidmann Distributed Operating Systems

ChangeCipherSpec

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

ChangeCipherSpec

Finished

SocketMessage

Finished

SocketMessage

randomC, CipherSuites

randomS, CipherSuite, session ID

server public key

encrypted pre-mastersecret

hashed message and secret

encrypted and signed

SSL Handshake protocol

CLIENT SERVER

10


