
Distributed Operating Systems

Ing. Tomáš Seidmann, PhD.

Faculty of Informatics and Information Technology

Slovak University of Technology in Bratislava

seidmann@fiit.stuba.sk
http://www.cdot.ch/thomas/

– Typeset by FoilTEX –



T. Seidmann Distributed Operating Systems

Course outline

This course focuses on software issues in the design and

implementation of modern computer systems, particularly the

operating systems and distributed algorithms that are essential in

supporting networking and distributed processing.

• Fundamental concepts (transparency, service, coordination)

• Distributed processes (synchronization, communication and

scheduling)

– Concurrent processes and programming

– Process interaction

– Process scheduling

• Distributed resources (files and memory)

– Distributed file systems

– Distributed shared memory

– Security issues in network and distributed environments

References

[1] Andrew S. Tanenbaum and Martin van Steen, Distributed

Systems: Principles and Paradigms (2nd Edition), Prentice

Hall 2007, ISBN 0-132-39227-5

1



T. Seidmann Distributed Operating Systems

[2] Randy Chow and Theodore Johnson, Distributed Operating

Systems and Algorithms, Adison-Wesley 1997, ISBN 0-201-

49838-3

2



T. Seidmann Distributed Operating Systems

Operating System Fundamentals

Functionality of operating systems can be divided into two

categories:

• system services

• kernel (nucleus)

View on operating systems:

• Machine abstraction (extended machine), primary design goal

• Resource manager (means of achieving the goal)

Evolution of operating systems:

• Centralized operating systems (conventional) - well understood

• Network operating systems and distributed operating systems

- caused by proliferation of personal workstations and LANs

• Cooperative autonomous systems - emerging concept:

Computational Grids

3



T. Seidmann Distributed Operating Systems

Evolution of modern operating systems

Generation System Characteristics Goals

first centralized process management resource management
operating memory management extended machine
system I/O management (virtuality)

file management

second network remote access resource sharing
operating information exchange (interoperability)
system network browsing

third distributed global view of : single computer
operating file system, view of multiple
system name space, computer systems

time, security, (transparency)
computational power

fourth cooperative open and cooperative cooperative work
autonomous distributed (autonomicity)
system applications

Centralized operating systems

Structuring the OS software in manageable modules:

• vertical - layering

• horizontal - partitioning within layers

• enhancing the portability - separating the hardware-dependent

code from the system - minimal kernel approach, which is

typically monolithic.

4



T. Seidmann Distributed Operating Systems

Centralized operating systems II

Typical functions of a minimal kernel:

• multiplexing of processors with multiprogramming support

• interrupt handling

• device drivers

• process sychronization primitives

• interprocess communication primitives

A universal minimal kernel on which standard operating

systems can be implemented to support application-oriented

subsystems is called a microkernel.

OS’s function as a resource manager:

• mapping (scheduling) of processors - multiprogramming and

timesharing

• process synchronization and interprocess communication

• process scheduling

• management of I/O operations, enhancing with spooling and

buffering

• providing virtual memory

• management of files

5



T. Seidmann Distributed Operating Systems

Network operating systems

Computer network = loosely coupled multiple computer

systems where no direct hardware or software control of one

workstation to another exists.

• straightforward extension of a traditional operating system to

facilitate resource sharing and information exchange

• information exchange divided and implemented at various

levels - communication subnetwork to transport services

• high-level API for transport services, such as sockets and

remote procedure call

• NOS characterized by inclusion of a transport layer and the

support for network applications like:

– remote login

– file transfer

– messaging

– network browsing

– remote execution

6



T. Seidmann Distributed Operating Systems

Distributed operating systems

Sharing of resources and coordination of distributed activities

in networked environments are the main goals in the design of

a distributed operating system. The key distinction between a

network OS and a distributed OS is the concept of transparency :

• concurrency transparency (also in centralized OS)

• location transparency

• parallelism and performance transparency

• migration transparency

• replication transparency

Distributed operating systems consist of three major

components:

• coordination of distributed processes

• management of distributed resources

• implementation of distributed algorithms

7



T. Seidmann Distributed Operating Systems

Cooperative autonomous systems

• distributed systems are characterized by service decomposition

• cooperative autonomous systems emphasize service integration

The emerging need for cooperative autonomous systems

has triggered several standardization efforts for development of

distributed software:

• Common Object Request Broker Architecture (CORBA)

• Java RMI/JNDI/Jini, .NET Remoting

• Web Services/UDDI

• WCF(Indigo, .NET 3.0), SCA (Java, C++, PHP...)

Important features:

• use of intelligent trader or broker architecture

• can be viewed as a software bus

• serve as middleware that supports distributed cooperative

applications

8



T. Seidmann Distributed Operating Systems

Distributed algorithms

Distributed systems have following specialties compared to

centralized systems:

• Message passing as the media of all coordination among

concurrent processes due to the lack of shared memory. The

distributed algorithms may be fully decentralized or centralized

(in the latter case a distributed election algorithm is required).

• Lack of global information due to network delays and

unreliable system components. Includes the lack of global

timing.

• Data replication. The primary goal of the protocols is to

maintain data consistency.

• Failures and recovery. Fault tolerance becomes more critical

issue for distributed systems. It uses redundancy of resources

and services. Recovery is a passive approach in which the

state of the system is maintained and used to roll back the

execution to some checkpoint.

9



T. Seidmann Distributed Operating Systems

Distributed system concepts and architectures

Goals:

• Efficiency is more complex in distributed systems than in centralized
systems due to the effect of communication delays. With respect to
system load distribution, problems such as bottlenecks and congestion
either in the physical networks or software components must be addressed.
Computation speed and system throughput can be enhanced through
distributed processing and load sharing if the communication system is
carefully designed.

• Flexibility includes the friendliness of the system and the freedom of the
user in using the system - ease of use of the system interface and the
ability to relate the computation processes in the user’s problem domain
to the system. The object-oriented strategy is a commonly used strategy
in achieving this goal. From the system’s view flexibility is the system’s
ability to evolve and migrate - modularity, scalability, portability and
interoperability.

• Consistency is more difficult to achieve in a distributed system due to the
lack of global information, potential replication and partitioning of data,
the possibility of component failures and the complexity of interaction
among modules. The system must be capable of maintaining its integrity
with proper concurrency control mechanisms and failure handling and
recovery procedures.

• Robustness. Failures (in communication links, processing nodes and
client/server processes) are more frequent than in a centralized single
computer system. Meaning of robustness:

– fault tolerance: ability to reinitialize itself to a consistent state with
only some possible degradation of its performance

– security

10



T. Seidmann Distributed Operating Systems

Transparency

• Goal motivated by the desire to hide all irrelevant system-dependent details
from the user, whenever possible.

• It is more important in distributed systems due to higher implementation
complexities.

• Shielding the system-dependent information from the users is a trade-off
between simplicity and effectiveness.

• Access transparency - accessing both local and remote system objects in
a uniform way.

• Location transparency - no awareness of object locations. Sometimes
called name transparency.

• Migration transparency - ability to move an object to a different location
without changing its name; also called location independence.

• Concurrency transparency - allow the sharing of objects without
interference.

• Replication transparency - consistency of multiple instances (or
partitioning) of files and data.

• Parallelism transparency - parallel activities without users knowing how,
when and where.

• Failure transparency - fault tolerance.

• Performance transparency - attempts to achieve a consistent and
predictable performance level even with changes of the system structure or
load distribution.

• Size transparency - modularity and scalability.

• Revision transparency - vertical growth of the system.

11



T. Seidmann Distributed Operating Systems

Services

• An operating system is a service provider.

• There are different levels of services.

• The most fundamental services are implemented in the kernel

of each node of the system: system primitives.

– communication

– synchronization

– processor multiplexing

– send and receive primitives for message passing

(asynchronous or synchronous).

• Functions basic to the operation of a distributed system, but

implemented anywhere: system servers.

– name server or directory server
– network server - transformation of addresses of locations

to communication paths and routing information

– time server - physical and logical clocks

– file and print servers
– migration server
– authentication server

• Higher-level or special-purpose services: value-added servers.

– group server - groups of interacting processes

– distributed conferencing server
– concurrent editing server

12



T. Seidmann Distributed Operating Systems

Architecture models

Distributed system architectures:

• workstation-server model: a workstation may serve as a

stand-alone computer or as a part of an overall network.

• processor-pool model: collecting all processing power in

one place and leaving the users with only a terminal (added

parallelism transparency).

Communication network architecture:

• point-to-point

• multipoint

– bus-based: IEEE 802 LAN standards

– switched: ISDN, SMDS, ATM

• for distributed systems the ratio of propagation delay to

transmission delay is important: smaller values means more

“closeness” of the system components (more suitable for

systems requiring interactive exchanges of shorter messages),

larger values lead to a more “communication oriented” system.

13



T. Seidmann Distributed Operating Systems

Communication network protocols

• Sets of rules that regulate the exchange of messages to

provide a reliable and orderly flow of information among

communicating processes.

• Two categories of communication services:

– connection-oriented, network level: virtual circuit,

communication hardware level: circuit switching

– connectionless, network level: datagram, communication

hardware level: packet switching

• Communication hardware and software is normally structured

in layers.

• Standardized network specification are called network system
architectures.

• Layers for a standardized network architecture are referred to

as a protocol suite.

• Two of the most popular network protocol suites: ISO OSI
and U.S. DoD TCP/IP.

14



T. Seidmann Distributed Operating Systems

Major design issues

A distributed system consists of concurrent processes accessing distributed
resources (which may be shared or replicated) through message passing in a
network environment that may be unreliable and contain untrusted components.
This raises many design and implementation issues, in particular how to support
transparency.

• Object models and naming services Objects in a computer system are
processes, data files, memory, devices, processors, networks. It is tempting
to assume that all objects can be represented in a uniform way - objects
are encapsulated in servers and the only visible entities in the system are
the servers. Servers must be identifiable:

– Identification by name (name server);
– Identification by physical or logical address (network server);
– Identification by service that the servers provide - critical to the

implementation of autonomous cooperating systems.

• Distributed coordination

– Barrier synchronization
– Condition coordination
– Mutual exclusion
– Deadlock detection/prevention

The task of coordination is complicated by the fact of absence of global
state: distributed resolution protocols or a centralized coordinator are
the solutions. The role of the centralized coordinator can be moved
from one process to another so that the coordinator will not become the
central point of failure. Lack of global state can be circumvented with
agreement protocols: message passing algorithms that achieve consensus
in a distributed system with potentially faulty components.

15



T. Seidmann Distributed Operating Systems

• Interprocess communication It is desirable to have transparency in
communication by providing higher-level logical communication methods
that hide the physical details of message passing:

– The client/server model;
– Remote procedure call (RPC);
– Group management and group communication (cornerstone of CSCW

- Computer Supported Cooperative Work).

• Distributed resources

– load distribution
∗ multiprocessor scheduling
∗ load sharing

– distributed shared memory
– distributed file systems

• Fault tolerance and security

– Security threats and failures are both system faults.
– The problem of failures can be alleviated if there is redundancy in the

system - problem with checkpointing.
– Security: authentication and authorization.

16


