
T. Seidmann Distributed Operating Systems

Distributed process scheduling

The primary objective of scheduling is to enhance overall

system performance metrics such as process completion time and

processor utilization. The existence of multiple processing nodes

in distributed systems present a challenging problem for scheduling

processes onto processors and vice versa.

A system performance model

Partitioning a task into multiple processes for execution can

result in a speedup of the total task completion time. The

speedup factor S is a function

S = F (Algorithm, System, Schedule)

S can be written as:

S =
OSPT

CPT
=

OSPT

OCPTideal

× OCPTideal

CPT
= Si × Sd

where

• OSPT = optimal sequential processing time

1

T. Seidmann Distributed Operating Systems

• CPT = concurrent processing time

• OCPTideal = optimal concurrent processing time

• Si = the ideal speedup

• Sd = the degradation of the system due to actual

implementation compared to an ideal system

Si can be rewritten as:

Si =
RC

RP
× n

where

RP =

Pm
i=1 Pi

OSPT
and

RC =

Pm
i=1 Pi

OCPTideal × n

and n is the number of processors. The term
Pm

i=1 Pi is the

total computation of the concurrent algorithm where m is the

number of tasks in the algorithm. Sd can be rewritten as:

Sd =
1

1 + ρ

where

ρ =
CPT −OCPTideal

OCPTideal

2

T. Seidmann Distributed Operating Systems

RP is Relative Processing: how much loss of of speedup

is due to the substitution of the best sequential algorithm by an

algorithm better adapted for concurrent implementation. RC is

the Relative Concurrency which measures how far from optimal

the usage of the n-processor is. It reflects how well adapted

the given problem and its algorithm are to the ideal n-processor

system. The final expression for speedup S is

S =
RC

RP
× 1

1 + ρ
× n

The term ρ is called efficiency loss. It is a function of

scheduling and the system architecture. It would be decomposed

into two independent terms: ρ = ρsched + ρsyst, but this

is not easy to do since scheduling and the architecture are

interdependent. The best possible schedule on a given system

hides the communication overhead (overlapping with other

computations).

The unified speedup model integrates three major

components

• algorithm development

• system architecture

• scheduling policy

3

T. Seidmann Distributed Operating Systems

with the objective of minimizing the total completion time

(makespan) of a set of interacting processes. If processes are not

constrained by precedence relations and are free to be redistributed

or moved around among processors in the system, performance

can be further improved by sharing the workload

• statically - load sharing

• dynamically - load balancing

λ
µ

µ

µ

µ

µ

µ
λ

λ

2λ

γ

(c) Migration workstation model

(a) M / M / 1 isolated workstations

(b) M / M / 2 processor pool model

λ

The standard notation for describing the stochastic properties

of a queue is Kendall’s notation. An X/Y/c is one with an

arrival process X, a service time distribution of Y and c servers.

The processor pool can be described as an M/M/2, where M

stands for a Markovian distribution.

4

T. Seidmann Distributed Operating Systems

In the migration workstation model, the migration rate

γ is a function of the channel bandwidth, process migration

protocol, and context and state information of the process being

transferred.

Static process scheduling

• Scheduling a set of partially ordered tasks on a nonpreemtive

multiprocessor system of identical processors to minimize the

overall finishing time (makespan)

• Except for some very restricted cases scheduling to optimize

makespan is NP-complete

• Most research is oriented toward using approximate or heuristic

methods to obtain a near optimal solution to the problem

• A good heuristic distributed scheduling algorithm is one that

can best balance and overlap computation and communication

In static scheduling, the mapping of processes to processors is

determined before the execution of the processes. Once a process

is started, it stays at the processor until completion.

Precedence process model

• Program is represented by a directed acyclic graph (DAG)

• Computational model

5

T. Seidmann Distributed Operating Systems

• Primary objective of task scheduling is to achieve maximal

concurrency for task execution within a program

(b) Communication system model

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

&%

'$

@
@

@
@

@

¡
¡

¡
¡

¡

QQQQQQQ

´́
´́

´́
´

¡
¡

¡
¡

¡

@
@

@
@

@

S
S
S
S
S
S
S ¶

¶
¶
¶
¶
¶
¶

A/6 B/5 C/4

F/4E/6D/6

G/4

P1 P3

P2

2

11

0 0

0

4
1 3

3
3

1 1

1

2

(a) Precedence process model

Finding the minimum makespan is NP-complete, so we will

rely on heuristic algorithms for finding good mapping of the

process model to the system model. For precedence process

graphs, the notion of critical path is useful - the longest execution

path in the DAG, which is the lower bound of the makespan.

Simple heuristic: map all tasks in a critical path onto a single

processor.

1. List Scheduling (LS) strategy: No processor remains idle if

there are some tasks available that it could process (without

considering communication overhead).

6

T. Seidmann Distributed Operating Systems

2. Extended List Scheduling (ELS) strategy: Allocating tasks

to processors according to LS and adding communication

delays. communication overhead.

3. Earliest Task First (ETF): The earliest schedulable task is

scheduled first (calculation includes communication overhead).

6

P1

P2

P3

A/6 D/6 G/4

B/5 F/4 7

C/4 2 E/6 4

(a) LS

Makespan = 16

P1

P2

P3

A/6

B/5

C/4

(b) ELS G/4D/6

17F/4

8 Makespan = 28E/610

2 10

2

P1

P2

P3

A/6

B/5

C/4

(c) ETF

Makespan = 18

E/6

D/6 G/4

F/4

1

4

2

6

Communication process model

7

T. Seidmann Distributed Operating Systems

• Process scheduling for many system applications has a

perspective very different from precedence model - applications

may be created independently, processes do not have explicit

completion time and precedence constraints

• Primary objectives of process scheduling are to

maximize resource utilization and to minimize interprocess

communication

• Communication process model is an undirected graph G with

node and edge sets V and E, where nodes represent processes

and the weight on an edge is the amount of interaction between

two connected processes

5

"!

#Ã

"!

#Ã

"!

#Ã

"!

#Ã

"!

#Ã

!!!!!!!

HHHHHHH

PPPPPP
l

l
l

l
l

l
l

Cost on AProcess Cost on B

1

2

3

4

5

6

5

2

4

6

5

infinity

10

4

3

2

4

infinity 2

1

6

3

4

5

6 12

11

12

8

3

(a) Computation set (b) Communication cost

4

"!

#Ã

8

T. Seidmann Distributed Operating Systems

Objective function called Module Allocation for finding an

optimal allocation of m process modules to P processors:

Cost(G, P) =
X

j∈V (G)

ej(pi) +
X

(i,j)∈E(G)

ci,j(pi, pj)

where ej(pi) is the execution cost of process j on pi, which

is the processor allocated to process j and ci,j(pi, pj) is the

communication cost between two processes i and j, allocated to

two different processors pi and pj.

For P = 2 there is an efficient polynomial-time solution

using Ford-Fulkerson’s maximum-flow algorithm - equivalent to

the minimum cut set in the graph.

Heuristic solution: separate optimization of computation and

communication into two independent phases.

• Processes with higher interprocess interaction are merged into

clusters

• Each cluster is then assigned to the processor that minimizes

the computation cost

9

T. Seidmann Distributed Operating Systems

Cut Set Cost = 38
#

"

Ã

!
#

"

Ã

!
#

"

Ã

!
#

"

Ã

!

#

"

Ã

!

!!!!!!!

HHHHHHH

PPPPPP
l

l
l

l
l

l
l

2

1

6

3

4

5

6 12

8

3

4

5

A

Minimum-cost cut

B

2

5

511

inf.

12

4

10

inf.

4

3

2

6

4

#

"

Ã

!

10

T. Seidmann Distributed Operating Systems

Dynamic load sharing and balancing

The assumption of prior knowledge of processes is not realistic

for most distributed applications. The disjoint process model,

which ignores the effect of the interdependency among processes,

is used. Objective of scheduling: utilization of the system (has

direct bearing on throughput and completion time) and fairness

to the user processes (difficult to define).

If we can designate a controller process that maintains the

information about the queue size of each processor:

• Fairness in terms of equal workload on each processor (join the

shortest queue) - migration workstation model (use of load
sharing and load balancing, perhaps load redistribution i.e.

process migration)

• Fairness in terms of user’s share of computation resources

(allocate processor to a waiting process at a user site that has

the least share of the processor pool) - processor pool model

Solutions without a centralized controller: sender- and

receiver-initiated algorithms.

Sender-initiated algorithms:

11

T. Seidmann Distributed Operating Systems

• push model

• includes probing strategy for finding a node with the smallest

queue length (perhaps multicast)

• performs well on a lightly loaded system

Receiver-initiated algorithms:

• pull model

• probing strategy can also be used

• more stable

• perform on average better

Combinations of both algorithms are possible: choice based

on the estimated system load information or reaching threshold

values of the processing node’s queue.

12

T. Seidmann Distributed Operating Systems

algorithm

Turnaround time

System load

Performance comparison of dynamic load-sharing algorithms

M / M / 1
no load balancing

sender-initiated
algorithm

receiver-initiated

13

T. Seidmann Distributed Operating Systems

Distributed process implementation

Logical model of local and remote processes

#

"

Ã

!

#

"

Ã

!

#

"

Ã

!

CLIENT SERVER

local process

stub process

remote process

stub process

#

"

Ã

!

Three significant application scenarios:

• Remote service: The message is interpreted as a request

for a known service at the remote site (constrained only to

services that are supported at the remote host)

– remote procedure calls at the language level

– remote commands at the operating system level

– interpretive messages at the application level

• Remote execution: The messages contain a program to be

executed at the remote site; implementation issues:

– load sharing algorithms (sender-initiated, registered hosts,

broker...)

14

T. Seidmann Distributed Operating Systems

– location independence of all IPC mechanisms including

signals

– system heterogeneity (object code, data representation)

– protection and security

• Process migration: The messages represent a process

being migrated to the remote site for continuing execution

(extension of load-sharing by allowing a remote execution to

be preeemted)

State information of a process in a distributed systems consists

of two parts: computation state (similar to conventional context

switching) and communication state (status of the process

communication links and messages in transit). The transfer of

the communication state is performed by link redirection and

message forwarding.

Link redirection and message forwarding

execution
suspend state and context

transfer execution
resume

link redirection

buffered by
source kernel

buffered by
destination kernel

messages messages

process freeze time

Reduction of freeze time can be achieved with the transfer

15

T. Seidmann Distributed Operating Systems

of minimal state and leaving residual computation dependency

on the source host: this concept fits well with distributed shared

memory.

16

