
T. Seidmann Distributed Operating Systems

Distributed computer security

Computer security :

1. Secrecy (privacy, confidentiality)

2. Integrity

3. Availability (without denial of service)

Fault tolerance:

1. Reliability

2. Safety

Fault-tolerant and secure computer and communication

system is called dependable.

Distributed systems are inherently more vulnerable to security

threats than a single computer system:

• Open architecture

• Need for interaction across a wide range of autonomous and

heterogeneous systems

• Message passing IPC through a communication network

(spoofing and forging)

1



T. Seidmann Distributed Operating Systems

Fundamentals of computer security

Two views of computer security:

• access control policy: security policy describing how objects

are to be accessed by subjects

• flow control policy: security policy describing the information

flow between entities (objects and subjects)

Four categories of common security threats to objects:

• interruption

• interception

• modification

• fabrication

Fundamental approaches in dealing with security problems:

• authentication (excluding external intruders)

• authorization (control of internal intruders)

• fault-tolerance (prevention of unintentional faults)

• encryption (maintaining privacy)

• auditing (passive form of protection, catching security

breaches)

2



T. Seidmann Distributed Operating Systems

Security issues in distributed systems
Distributed OS system architecture principle: separation of

mechanisms (kernel) and policies (servers).

request

client processes

other operating system servers

authentication

server

authorization

server

other security

servers

trusted secure kernel

response

Retaining interoperability and transparency in face of potential

security threats - security transparency. To achieve this, a

standard security system architecture with an API for trusted

applications is needed. Example: Generic Security Service

Application Program Interface (GSS-API).

Discretionary access control models

Provide access control on an individual basis.

• Access control matrix (ACM) using the distributed

3



T. Seidmann Distributed Operating Systems

compartment model (logical grouping of collaborating subjects

and objects across node boundaries)

– access based on distributed handles - application oriented,

independent of the underlying operating system

– each distributed compartment has at least one member -

owner (has maximum privileges)

– may be hierarchically structured

• Implementation of ACM: access control lists (ACL), capability

list (CL), lock-key (combination of ACL and CL)

Mandatory flow control models

Concerned about information flow control on a systemwide

basis.

• Categorizes all system entities into security classes

• Classification is labeled on every subject and object

• Access is controlled according to this classification

• The class of an entity seldom changes after it has been created

Lattice model

The best-known information flow model. A lattice is a

directed acyclic graph (DAG) with a single source and sink. Each

object and subject is associated with a security class, and all

4



T. Seidmann Distributed Operating Systems

security classes form a partially ordered set. Information can flow

only in the direction that matches the partial ordering.

Formal definition of the lattice model:

FM =< S, O, SC, F,⊕,⊗,→>

where

• S - set of subject (active agents responsible for information

flow)

• O - set of objects (logical or physical information resources)

• SC - finite set of security classes corresponding to disjoint

classes of information (all form a partial ordering)

• F - mapping function from S or O to SC called binding

• ⊕ - least upper bound operator on SC; for any two classes

A and B, the class A⊕ B is uniquely defined

• ⊗ - greatest lower bound operator on SC; for any two classes

A and B, the class A⊗ B is uniquely defined

• → - flow relation defined on pairs of security classes; A → B

means information in class A is permitted to flow into class

B (exists only of B is higher than A in partial ordering)

An FM is secure only if the execution of a sequence of

operations cannot give rise to an information flow that violates

the relation →.

5



T. Seidmann Distributed Operating Systems

Properties of a lattice:

• Reflexive: A → A

• Transitive: A → B and B → C implies A → C

• Antisymmetric: A → B and B → A implies A = B

• Aggregation: A → C and B → C implies A ∪ B → C

• Separation: A ∪ B → C implies A → C and B → C

Examples of a lattice
A linear ordered lattice, in which SC = C1, . . . , Cn, Ci → Cj

iff i ≤ j, Ci ⊕ Cj = Cmax(i,j), and Ci ⊗ Cj = Cmin(i,j):

C1 → C2 → . . . → Cn−1 → Cn

A lattice of subsets of X = x, y, z, in which SC =

powerset(X), Ci → Cj iff Ci ⊆ Cj, Ci ⊕ Cj = Ci ∪ Cj,

and Ci ⊗ Cj = Ci ∩ Cj:

6



T. Seidmann Distributed Operating Systems

0

HHHHHHHH

��������

HHHHHHHH

��������

HHHHHHHH

HHHHHHHH

��������

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

��������

Bell-LaPadula model: Cartesian product of the linear

ordered lattice (hierarchical) - security level - and the subset

lattice (non-hierarchical) - security category.

Cryptography

Identities of clients and servers are called principals.
Authenticated principal: principal given a secret key (a unique

attribute). Authenticated message: data unit that carries a digital

signature so that the message cannot be forged or repudiated.

Cryptography can be applied for authentication of principals and

signing of messages in distributed systems.

Private-key cryptographic systems

7



T. Seidmann Distributed Operating Systems

Algorithm decomposed into two parts: a function (public)

and a key (secret). A single secret key is used to maintain a

secret conversation between principals (for both encryption and

decryption) - symmetric cryptography. Examples: DES, IDEA,

AES (Rijndael). Problem: key distribution, large number of keys.

Public-key cryptographic systems

Introduced by Diffie and Hellman. Each principal maintains

a pair of encryption and decryption keys, Ke and Kd. The

encryption algorithm E and Ke are known to public. The

decryption algorithm D and Kd are secret information belonging

to the principal - asymmetric cryptography. Examples: RSA,

Diffie-Hellman. Property of RSA:

M = DKs(EKp(M)) = DKp(EKs(M))

where Ks = Kd is the secret key, Kp = Ke is the public key.

The robustness of the algorithm is based on the computational

complexity of factoring a large number upon which the keys are

based.

Problems: higher computational complexity, public key

distribution.

Authentication and key distribution

Authentication-related threats:

8



T. Seidmann Distributed Operating Systems

replayimposter

&%
'$
impostereavesdrop

repudiation forgery

&%
'$

Final goal of the authentication protocol:

• For interactive connection-oriented services: to achieve a

mutually trusted session key for the communicating processes

• For one-way connectionless services: authentication and

protection of secrecy and integrity combined into a one-shot

message

Most distributed applications follow the client/server

programming paradigm; interaction is viewed as request/reply

communication. Session keys can be used for this, but

conceptually simpler is the notion of tickets.

The Kerberos protocol

Designed for the client/server model

• Ticket: {identities, IP addresses, timestamp, lifetime, session

key} encrypted with the server’s key

9



T. Seidmann Distributed Operating Systems

• Authenticator: {identity, IP address, timestamp} encrypted

with the session key

Authenticator and ticket pair - credential.

Kerberos 5 authentication protocol:

5

&%
'$

&%
'$&%

'$
aaaaaaaaaaaaaa

aaaaaaaaaaaaa

��������������
��������������

G

Authentication
server

Ticket granting
server

SC

K

Client Server

1

2

3

4

&%
'$

1. C → K : C, G, N

2. K → C : {Kcg, N}Kc, T icketcg

3. C → G : Authenticatorcg, T icketcg

4. G → C : {Kcs, N}Kcg, T icketcs

5. C → S : Authenticatorcs, T icketcs

10


