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This thesis analyzes functionality and architecture of device drivers in Minix3 operating
system and design and implement selected driver. The target device is multimedia
audio controller ICH4 with AC'97 codec used in notebooks. Driver implementation
requires knowledge of the target device as well as the host system. The driver can by
divided into two layers: hardware-independent (top) and hardware-dependent (bottom)
layer. The top layer represents a universal interface. It communicates with operating
system as well as with the bottom layer and it is the same for every sound card. The
bottom layer is device dependent and the implementation is based on manufacturer
speci�cations.
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1 INTRODUCTION

1 Introduction
This thesis analyzes the functionality and architecture of device drivers in Minix3 op-
erating system. It also describes design and implemention of the selected driver. The
target device is multimedia audio controller ICH4 with AC'97 codec used in notebooks.
Driver implementation requires knowledge about the target device as well as the host
system. The driver can by architectonically divided into two layers: hardware inde-
pendent (top) and hardware dependent (bottom) layer. The top layer represents a
universal interface. It communicates with operating system as well as with the bottom
layer and it is the same for every sound card. The bottom layer is device dependent
and the implementation is based on manufacturer speci�cations.

1.1 Motivation

Contemporary operating systems are essential elements in IT world. Lots of applica-
tions rely on these systems � from simple games over medical applications to whole
industry. Therefore improving this system is essential for further development. Most
of the today's operating system is very complex and not really a good starting point for
studying. To understand more complex systems, we primarily need to understand the
basic principles. This motivated us to a closer look at an interesting operating system
called Minix.

1.2 About Minix3

The �rst version of Minix was introduced 1987. The author Andy Tanenbaum wrote
an open source operating system for education purposes from scratch. Minix stands for
mini-UNIX, which means that the system is UNIX compatible and simple enough to
understand. The third edition of Minix is designed to be highly reliable, �exible, and
secure. Minix3 [4] is microkernel based operating system. It is completely written in the
C programming language and the kernel part has fewer than 4000 lines of executable
code so it is extremely small.
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2 MINIX3 ARCHITECTURE

2 Minix3 Architecture
As mentioned before, Minix3 is microkernel based system. The authors intention was
to keep the system "Small is Beautiful" [13, page 17]. It is composed from multiple
processes. Each of these processes belongs to one of the four layers, see Figure 1.
Processes in the �rst layer run in the privileged mode. They have unrestricted access
to everything. This layer contains only three processes: kernel task, system task and
the clock task.
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Figure 1: Internal structure of Minix3.

The kernel task contains everything what could not be moved elsewhere. Its most
prominent services perhaps are IPC primitives (send, receive, sendrec etc). Closely
related with IPC primitive is the scheduler of processes that is also part of the kernel.
The system task implements so called kernel calls. These kernel calls are made available
to device drivers and server processes (not for normal user processes). These kernel calls
usually perform some action that cannot be performed in user mode but is essential
for device drivers and servers.
Device drivers run in unprivileged user mode. They use the system task for talking
to the raw hardware and provide more abstract interface of that particular hardware.
Di�erent device driver processes deal with di�erent hardware devices.
Server processes run in unprivileged user mode too. Their services actually form the
public interface of the operating system. User processes can use these services via
so called system calls. The process manager implements various system calls related
to processes. The �le system implements various system calls related to dealing with
�les. It also mediates the communication of user space processes with device drivers,
as explained in Section 2.1.
The fact that applications as well as device drivers run in the user mode has several
bene�ts. Those parts that run in user mode are divided into small modules, well
insulated from one another. The main goal is that a potential bug in a device driver
or an application can not bring down the entire OS. As long as the drivers are not a
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2.1 Inter-Process Communication 2 MINIX3 ARCHITECTURE

�xed part of kernel, the kernel can be kept really small and is easier to maintain and
to debug. These features and other aspects greatly enhance the system reliability. In
addition to this, the system is transparent and simple enough for a beginner too, so it
is a good starting point to the world of operating systems.

2.1 Inter-Process Communication

An important part of a microkernel is a well designed IPC system. Since all programs
are well insulated from each other a good data exchange mechanism is needed. Sending
of messages between processes solve this problem in Minix3. One process can send a
message to another by calling send() function, the target process obtains the message
by calling receive() function. An e�ective IPC system must have low overhead.
However, when we need to communicate with some device driver, another data ex-
change scheme is used. As Figure 2 shows that all communication between user process
and device driver goes through �le system.
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System
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Figure 2: User process to driver communication.

Device drivers in UNIX like systems (what Minix surely is) are represented as �les.
These special �les are created using mknod command that also assigns selected major
and minor number to this �le. File system manages his own process list to ensure
correct message passing between user process and device driver. For example imagine
a user process that reads a �le /dev/dummy which has a major number 24. Process call
a read() function. This function simply sends a message with requested operation to
�le system process. File system process compares the major number of accessed �le
with major numbers of running device drivers and sends a message to corresponding
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2.2 Sample driver 2 MINIX3 ARCHITECTURE

device driver. After the device driver replied a message or noti�cation is send back to
user process.

2.2 Sample driver

The �le system provides the necessary abstraction between user and data or user and
devices. When we for example read from a �le we needn't to bother where the data
are coming from. They can be placed on our local disk or received by the network card
from a computer that is 1000 kilometers away. This abstraction is very welcomed and
makes the programmers life easier (in most cases). To illustrate how device drivers
work we take a look at the following driver example with a few explanations.
From the end user application perspective a device is a special �le (for example
/dev/mixer). Special �les can be opened by user processes. When user process opens
a special �le, the �le system informs the driver that a user process is trying to open
the �le. Once the special �le is opened, the user process can read from it, or write to
it, and on every action, the �le system informs the driver. The driver can then reply
with data in case of read, or return a status value in case of write.
Here is a simple program that accesses a device:
#include <fcntl.h>
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

char buffer [100] = "0123456789";

int main( int argc , char** argv)
{

int fd, count;

/* Open special file fo reading */
fd = open("/dev/dummy", O_RDONLY);
i f (fd < 0) {

fprintf(stderr , "ERROR: cannot open /dev/dummy.\n");
return 1;

}

/* Read the data */
count = read(fd , buffer , 100);

/* Print the data */
fprintf(stderr , "DEBUG: %s\n", buffer);

/* Close special file */
close(fd);
return 0;

}

As you can see it is quite simple. The driver is a little bit more complicated, but in
generally it would look something like this:
PUBLIC void main(void)
{

message mess;

4



2.2 Sample driver 2 MINIX3 ARCHITECTURE

int result;

while (TRUE) {
i f (receive(ANY , &mess) != OK) continue;

switch(mess.m_type) {
case DEV_OPEN:
case DEV_CLOSE:

taskreply(TASK_REPLY , mess.m_source , mess.IO_ENDPT , OK);
break;

case DEV_READ:
do_read (&mess);
break;

case DEV_WRITE:
do_write (&mess);
break;

case DEV_STATUS:
do_status (&mess);
break;

default:
/* Reply to an unexpected message. */

taskreply(TASK_REPLY , mess.m_source , mess.IO_ENDPT , EINVAL);
break;

}
}

}

The main idea is that the driver runs in a loop and waits for messages. After the
message is received it is processed and a reply is send back to process that requested
speci�ed operation. The example above is simpli�ed and some functions are omitted
but it is su�cient for our illustration.
To establish a connection between our driver and special �le we need to create the
special �le. Special �les are created with the command mknod. For example:

mknod /dev/dummy c 24 0

This creates a new special �le named /dev/dummy. The c expresses that this device
is a character device so it cannot handle random accesses requests. This special �le
will have major device number 24 and minor device number 0. If more special �les
have the same major device number, they we will all be linked to the same driver. The
minor number tells the driver which special �le is accessed. So the driver can handle
multiple special �les with the same major number but di�erent minor numbers. The
sound driver is a good example of this because it handles /dev/mixer, /dev/audio
and /dev/rec.
After the special �le is created the executable has to be explicitly loaded as a driver.
This can be done with the command service up. For example:

service up /sbin/sample_driver -dev /dev/dummy

The target operating system is Minix3. The �rst version (Minix) was developed for
operating systems education purposes. In meantime the third version of Minix is de-
signed to be highly reliable, �exible, and secure. Minix3 is microkernel based operating
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2.2 Sample driver 2 MINIX3 ARCHITECTURE

system. It is completely written in C language and the kernel part has fewer than 4000
lines of executable code so it's extremely small.
The applications as well as device drivers run in the user mode. This approach has
several bene�ts. The parts that run in user mode are divided into small modules, well
insulated from one another. The main goal is that a potential bug in a device driver
or an application can not bring down the entire OS. As long as the drivers are not a
�xed part of kernel, the kernel can be kept really small and is easier to manage and
to debug. These features and other aspects greatly enhance the system reliability. In
addition to this, the system is transparent and simple enough for a beginner too, so it
is a good starting point to the world of operating systems.

6



3 HARDWARE

3 Hardware
For the driver development and testing was used Intel R© Mobile Technology based
notebook with ICH4 southbridge1. This technology is widely spread. Intel also o�ers a
very good technical and developer resources so there is enough information on the web
needed by a driver developer. To reveal what devices we are exactly dealing with, we
simply run the lspci command under our Linux distribution. In the following output
we can see this line:
Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM
(ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 03)

According to product information Intel R© I/O Controller Hub (ICH4) provides these
features:

• High-speed USB 2.0

• AC'97 audio

• High Precision Event Timer

• System manageability bus

• Continual support for six PCI slots

• ATA 100

• LAN connect interface

1A chip on a motherboard that controls all onboard devices including the IDE bus and PCI bus
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3.1 ICH4 Architecture 3 HARDWARE

3.1 ICH4 Architecture

To �gure out how the devices work, we need a at least basic information about their
architecture. Figure 3 shows the whole system architecture but we will focus at the
AC'97 Codec and the ICH4 controller. The AC'97 Codec is directly responsible for the
sound output and ICH4 controls this codes [9].

Processor

Intel®

82801 DB ICH4
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Figure 3: ICH4 architecture overview

Note that the codec is directly connected to the controller. So it is not a classical
sound card we can pull from a PCI slot. The audio controller is integrated in the ICH4
controller and acts as PCI device2. Therefore we can work with the audio controller as
with usual PCI device and need not care whether is it plugged in a PCI slot or not.

3.2 Accessing PCI devices

Every PCI device responds to con�guration commands, and it can respond to I/O
accesses and/or memory accesses. During the boot time, the BIOS or the OS sets the
base address registers (BARs) through con�guration space. BARs determine address
ranges in I/O or memory space that a device should respond to. Obviously, those

2An integrated circuit �tted onto the motherboard itself is called a planar device in the PCI
speci�cation [1].
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3.2 Accessing PCI devices 3 HARDWARE

ranges should not be duplicated anywhere else in the I/O space or memory space on
the same PCI bus [2].
PCI device has a set of registers that are used for communicating with the CPU. By
writing into these registers, we can send data or perform some action. By reading from
these registers we can learn what the device's state is. These registers are mapped into
computer I/O space using the base addresses [12].
To access concrete device we can enumerate all PCI devices or as shown in Figure 4,
we can access the device according to his Bus:Device:Function number. This approach
is possible, because the mentioned devices are hardwired into the hardware and they
have statically assigned numbers.

Bus:Device:Function  Function Description

Bus 0:Device 30:Function 0 

Bus 0:Device 31:Function 0 

Bus 0:Device 31:Function 1 

Bus 0:Device 31:Function 3 

Bus 0:Device 31:Function 5 

Bus 0:Device 31:Function 6 

Bus 0:Device 29:Function 0 

Bus 0:Device 29:Function 1 

Bus 0:Device 29:Function 2 

Bus 0:Device 29:Function 7 

Bus n:Device 8:Function 0 

Hub Interface to PCI Bridge

PCI to LPC Bridge

IDE Controller

SMBus Controller

AC ’97 Audio Controller

AC ’97 Modem Controller

USB UHCI Controller #1

USB UHCI Controller #2

USB UHCI Controller #3

USB 2.0 EHCI Controller

LAN Controller

Figure 4: PCI Device and Functions

PCI devices inserted in PCI slots can not have prede�ned bus or device number. You
can pull out the PCI card from one slot and put it into another. More precisely, you
can decide on what bus and slot the device will be, so the software can not rely on
prede�ned numbers. In this case PCI enumeration is used. The driver lists all devices
connected to PCI bus, and asks for the Vendor and Product ID. After the device is
located, operations can be performed.
However, our Audio Controller has a statically assigned Bus:Device:Function number.
Minix3 o�ers us a couple of functions to access PCI con�guration space provided that
we know the Bus:Device:Function number. In the following example we will read the
Vendor ID, Device ID and Mixer Base Address from Audio Controller con�guration
space:
/* PCII_RREG32_(Bus , Device , Function , Register)
* this macro reads 32bit value from PCI configuration space
*/

9



3.3 AC'97 Codec 3 HARDWARE

#include "../pci/pci_intel.h"

void main()
{

u16_t vendor_id;
u16_t device_id;
u32_t mixer_base;

vendor_id = PCII_RREG16_ (0, 31, 5, 0x00); /* Bus0:Dev31:Func5:Reg0 */
device_id = PCII_RREG16_ (0, 31, 5, 0x02);
mixer_base = PCII_RREG32_ (0, 31, 5, 0x10);

}

This example simply illustrates the access to PCI con�guration space of speci�ed device
in Minix3. Description of AC '97 Audio PCI Con�guration Space is included in Sec-
tion 6 (Technical documentation). If you are interested how the PCII_RREG/PCII_WREG
macro works please refer to Software Generation of Con�guration Transactions and
pci_intel.h listing also included in Section 6.

3.3 AC'97 Codec

There are many AC'97 compliant codecs from various manufacturers. In our case the
codec is marked as CS4201 and manufactured by Cirrus Logic R©.
The CS4201 is a mixed-signal serial audio codec with integrated headphone power
ampli�er compliant with the Intel R© Audio Codec '97 Speci�cation, revision 2.1 [6]
(referred to as AC '97). It is designed to be paired with a digital controller, typically
located on the PCI bus or integrated within the system core logic chip set. The con-
troller is responsible for all communications between the CS4201 and the remainder of
the system. The CS4201 contains two distinct functional sections: digital and analog.
The digital section includes the AC-link interface, S/PDIF interface, serial data port,
GPIO, power management support, and Sample Rate Converters (SRCs). The analog
section includes the analog input multiplexer (mux), stereo input mixer, stereo output
mixer, mono output mixer, headphone ampli�er, stereo Analog-to-Digital Convert-
ers (ADCs), stereo Digital-to-Analog Converters (DACs), and their associated volume
controls [6].

3.4 AC-Link

�All communication with the CS4201 is established with a 5-wire digital interface to the
controller called the AC-link. This interface is shown in Figure 5. All clocking for the
serial communication is synchronous to the BIT_CLK signal. BIT_CLK is generated by
the primary audio codec and is used to clock the controller and any secondary audio
codecs. Both input and output AC-link audio frames are organized as a sequence of
256 serial bits forming 13 groups referred to as `slots'. During each audio frame, data
is passed bi-directionally between the CS4201 and the controller. The input frame is
driven from the CS4201 on the SDATA_IN line. The output frame is driven from the

10



3.4 AC-Link 3 HARDWARE

controller on the SDATA_OUT line. The controller is also responsible for issuing reset
commands via the RESET# signal.�

Literaly drawn from [6]

Digital AC’97

Controller
CODEC

SYNC

BIT_CLK

SDATA_OUT

SDATA_IN

RESET#

Figure 5: AC-link connections

The previous part describes the AC-link. Not all information are important for us but
there is one thing we should be familiar with. The controller and codec communicate
trough 5 wires with speci�ed protocol. Data are sent in groups referred to as "slots".
This communication takes a while so we have to take care about reading and writing the
codec. Imagine this: The controller transmits data to codec and in the same moment
we want to read some codec register. The read operation will possibly return wrong
value, because it couldn't be performed. Therefore we have to watch the status of the
AC-link and commit the read/write operation only if the AC-link bus is ready.
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3.5 DMA Engine 3 HARDWARE

3.5 DMA Engine

To ensure the data exchange between device driver and device, DMA engine is used.
ICH4 AC '97 controller provides six 16-bit DMA engines for audio

• PCM in channel

• PCM out channel

• MIC in channel

• MIC 2 in channel

• S/PIDF out channel

3.5.1 Bu�er Descriptor List

The Bu�er Descriptor list contains up to 32 entries. As shown in Figure 6 each entry
contains a pointer to a data bu�er, control bits, and the length of the bu�er being
pointed to. The length represents the number of samples. If we combine this with
16-bit sample size, we get the actual physical length of the bu�er. The bu�er length is
restricted to 65536 samples. "0" in the bu�er length indicates no samples to process [7].

DWord 0: 00-03h

DWord 1: 04-07h

Buffer Pointer 0

Buffer LengthIOC BUP

31 1 0

31 30 29 16 15 0

R

Figure 6: Bu�er descriptor list entry.

The maximum length of the bu�er descriptor list is is limited by the size of the index
registers to 32. Figure 7 shows the organization of the Bu�er Descriptor List.
In order to control the actually processed bu�er, the count of bu�ers as well as the
actually prefetched index there are three registers to this purpose:

Current Index Value Register (R/W) represent which bu�er descriptor is cur-
rently being processed.

Last Valid Index Register (R/W) represents the last valid descriptor in the list.

Prefetched Index Value Register (RO) indicates which bu�er descriptor in the
list has been prefetched.
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3.5 DMA Engine 3 HARDWARE

Buffer Pointer

Command Length

Buffer Description List

Base Address

Data Buffer

Index 0

Index 31

Buffer Pointer

Command Length

Buffer Pointer

Command Length

Figure 7: Bu�er descriptor list.

3.5.2 DMA Initialization

To initialize a single DMA engine the following steps are described in [7, page 14].

1. Create the bu�er descriptor list structure in memory (non-paged poll).

2. Write the Bu�er Descriptor List Base Address register with the base address of
the bu�er descriptor list.

3. Set up the bu�er descriptors and their corresponding bu�ers.

4. Once bu�er descriptors have been set in memory, the software writes the Last
Valid Index (LVI) register.

5. After the LVI registers have been updated, the software sets the run bit in the
control register, in order to execute the descriptor list.

The same process should be repeated for each DMA engine.
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4 IMPLEMENTATION

4 Implementation
In implementation we have focused on the hardware dependent part and tried to full
re-use the existing audio framework [5]. Driver is completely written in C language.
To compile the source code we used the cc compiler which is a part of the ACK
(Amsterdam Compiler Kit).

4.1 Audio framework

In this part we will take a closer to look at the driver design. In order to simplify
the driver development process, the driver has been divided into two parts � hardware
independent and hardware dependent.
Hardware independent part provides a framework which can be re-used in other drivers.
In our case we used Laurens Bronwasser's (and Peter Boonstoppel's) audio framework
as a base for our next implementation. We made only minor changes to his source code.
The framework has several functions: it takes and processes messages from operating
system and manages DMA bu�ers.
Hardware dependent part implements functionality to functions called by the audio
framework. Figure 8 shows the architecture of our driver. System communicates with
driver by passing messages to each other using send() and receive() primitives.
The audio framework processes these messages. In case an operation on hardware is
required, a call to drv_* function in hardware dependent part is made. In hardware
dependent part of driver, we access the hardware directly using I/O operations.

4.2 Hardware dependent part

The implementation of hardware depend part is based on information we obtained
from datasheets provided by the hardware manufacturer. To control the sound card,
we had to master the access to controller as well as to codec (Section 3, Figure 3.).
We can access both devices directly using pci_in, pci_out functions. However, the
codec need special attention and we need some extra code to access these registers
correctly. Codec is connected to controller by AC-Link. The communication between
these devices takes some extra time, so we can not access codec's registers any time we
want. Codec Access Semaphore register (CAS) has to be checked before every read,
write operation to codec registers. Now, after we can access device registers, we can
fully control this devices. Detailed description of all register and their functionality
can be found in datasheets.
Typical sequence of step from initialization to playing sound can be brie�y described
be like this:

• Detect hardware and obtain base addresses
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DEV_OPEN

DEV_CLOSE

DEV_IOCTL

DEV_READ

DEV_WRITE

DEV_STATUS

HARD_INT

SYS_SIG

drv_init_hw()

drv_reset()

drv_set_dma()

drv_get_irq()

drv_io_ctl()

drv_get_frag_size()

drv_start()

drv_int_sum()

drv_int()

drv_reenable_int()

drv_pause()

drv_resume()

drv_stop()

Hardware depended partAudio framework

Handle messages:

DMA Buffering

Implements:

send() 

receive()

calls drv_*

snd_init()

snd_...

I/O
System Hardware

Figure 8: Two layer driver architecture.

• Initialize controller

• Power up codec

• Initialize codec (set volume mixer)

• Set pointers to DMA bu�ers

• Start bus master operation (start playing)

In the next sections, we will brie�y describe some interesting parts of code. It is
recomended to read this section together with source codes.

4.3 Device detection

The �rst thing we need to do is to detect our device, which is done by following function:
PRIVATE int detect_hw(void)
{

u32_t r;
int devind;
u16_t v_id , d_id;

pci_init ();
/* get first device and then search through the list */
r = pci_first_dev (&devind , &v_id , &d_id);
while( r > 0 )
{

i f (v_id == VENDOR_ID && d_id == DEVICE_ID )
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break;

r = pci_next_dev (&devind , &v_id , &d_id);
}
/* did we find anything? */
i f (v_id != VENDOR_ID || d_id != DEVICE_ID)

return EIO;

/* fill dev structure */
dev.name = pci_dev_name(v_id , d_id);
dev.base = pci_attr_r32(devind , PCI_BAR) & 0xfffffffe;
dev.irq = pci_attr_r8(devind , PCI_ILR);
dev.revision = pci_attr_r8(devind , 0x08);
dev.d_id = d_id;
dev.v_id = v_id;
dev.devind = devind; /* pci device identifier */

return OK;
}

The detect_hw() function iterates through all PCI devices and checks the Vendor ID
and Device ID. After the device is found, the dev structure is �lled. In our implemen-
tation we made this a little bit more complicated. In order to support multiple chipsets
we check for multiple Vendor and Device ID's.

4.4 Accessing registers

As we already mentioned, the codec registers can be accessed directly, but before the
CAS register has to be checked.
#define MICROS_TO_TICKS(m) (((m)*HZ /1000000) +1)

PRIVATE void micro_delay(unsigned long usec)
{

tickdelay(MICROS_TO_TICKS(usec));
}

PRIVATE int snd_wait_semaphore ()
{

int count = 100;
while (count --)
{

i f (( pci_inb( bus_master_base + ICH_REG_ACC_SEMA ) & ICH_CAS) == 0)
return OK;

micro_delay (40);
}
return ERR;

}

PRIVATE int snd_read_codec_register(u16_t offs , u16_t *data)
{

int status;
/* Wait for semaphore */
i f (snd_wait_semaphore ()!=OK)

return ERR;

/* Read the data */
*data = pci_inw(mixer_base+offs);

/* Check if read was sucessful */
status = pci_inl(bus_master_base+ICH_REG_GLOB_STA);
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i f (status & ICH_RCS)
{

/* clear timeout bit */
pci_outl(bus_master_base + ICH_REG_GLOB_STA , status);
return ERR;

}

return OK;
}

PRIVATE int snd_write_codec_register(u16_t offs , u16_t data)
{

int status;
/* Wait for semaphore */
i f (snd_wait_semaphore ()!=OK)

return ERR;

/* Write the data */
pci_outw(mixer_base+offs , data);

return OK;
}

The function snd_wait_semaphore() waits until the CAS bit in Codec Access Semaphore
Register is cleared. After this bit is checked, the function wait 40 microseconds. This
delay is recommended by vendor.

4.5 AC'97 initialization

After the hardware is detected a sound chip and codec initialization is required. To
access codec and controller registers, we need obtain a base address for these devices
/* Read Mixer and Bus Master base address

from PCI configuration space */
mixer_base = PCII_RREG32_ (0,31,5,0x10) & 0xFFFFFFF8;

bus_master_base = PCII_RREG32_ (0,31,5,0x14) & 0xFFFFFFF8;

Codec and chip initialization is following
/* InitAC7 */
PRIVATE int snd_init_codec ()
{

int status;
/* Check if the AC link to primary codec is ready */
dprint("Primary codec ready\n");
status = snd_primary_codec_ready ();
i f (status == OK)
{

/* Reset codec */
dprint("Reset codec\n");
snd_write_codec_register(AC97_RESET , 0x00);
/* Power up */
dprint("Power up codec\n");
status = snd_power_up_codec ();

}
return status;

}
/* Chip Initialization */
int snd_chip_init ()
{

17
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int i;
for (i=0; i<3; i++)
{

/* Disable Interrupts */
pci_outb(bus_master_base + i*0x10 + 0xB ,0); /* 0xB - CR */
/* Reset Channels */
pci_outb(bus_master_base + i*0x10 + 0xB,ICH_RESETREGS); /* 0xB - CR */

}
}

We only initialize the primary codec. After the code is initialized we set som nice mixer
volume levels.

4.6 DMA Initialization

Before the device can play some sound, DMA bu�ers needs to be initialized. To simplify
access to these bu�er, we introduced the following structure:
/* Buffer Descriptor Entry */
typedef struct
{

u32_t lpBuff; /* Buffer Pointer */
u16_t wLength; /* Buffer Length */
u16_t wPolicy; /* Policy Bits */

} BDENTRY;

This structure represents exactly one entry in the bu�er descriptor list (BD list) as
described in [7, page 13].
In the following code we initialize the whole bu�er descriptor list. However we use only
two DMA bu�ers.
/*
* This function arrange the Buffer Descriptio List. BDENTRY structure
* represents one entry from BD list. BD list can take up to 32 entries.
*/
int drv_set_dma(u32_t dma , u32_t length , int chan)
{

u32_t bd_base = ich_dev[chan].base;
BDENTRY *bdlist;

int i;
int frag_size = length >> 1;

/* DEBUG */ dprint("drv_set_dma(buff:%X, size:%d, chan:%d) frag_size :%d\n",dma ,
length ,chan , frag_size);

/* Pause DMA */
drv_pause(chan);

/* Reset Bus Master registers */
reset_bm_regs(bd_base);

/* Allocate BD List buffer */
snd_alloc_bdlist(chan);

/* Update BD List */
bdlist = ich_dev[chan]. lpList;
for (i=0; i<32; i+=2)
{
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bdlist[i+0]. lpBuff = dma;
bdlist[i+0]. wPolicy = ICH_IOC_ENABLE | ICH_BUP_ENABLE;
bdlist[i+0]. wLength = (frag_size >> 1);

bdlist[i+1]. lpBuff = dma + frag_size;
bdlist[i+1]. wPolicy = ICH_IOC_ENABLE | ICH_BUP_ENABLE;
bdlist[i+1]. wLength = (frag_size >> 1);

}

/* Set DBBAR */
pci_outl(bus_master_base + bd_base , (u32_t)ich_dev[chan]. PhysAddr);
/* pci_outb(bus_master_base + bd_base + 0x4 , 0); /* ? CIV - R/O */

/* Set Last Valid Index */
pci_outb(bus_master_base + bd_base + ICH_X_LVI , 0);

/* MIC: Enable */
pci_outb(bus_master_base + ICH_REG_SDM , 8);

/* clear interrupts */
pci_outw(bus_master_base + bd_base + ICH_X_SR , ICH_FIFOE | ICH_BCIS | ICH_LVBCI);

/* dump_regs ();*/
}

DMA bu�ers are allocated by the audio framework. The allocation of bu�er descriptor
list is handled in the snd_alloc_bdlist() function. Pointer to BD list is called Bu�er
Descriptor Base Address and is 64 kB aligned.

4.7 Future work

As for the further development the volume mixer should be designed and completed.
Only drawing of mixer control in "ALSA" style is implemented yet. The mp3 player
should be modi�ed and compiled for i586 or MMX to speed up decoding process. Mp3
player process takes ca. 70% of CPU time now. There is also one problem with record-
ing. At the time I don't know where the problem is, but we found out that the interrupt
is not received (or captured by the driver) after the bus master operation is started. We
also implemented only the PCM out and Mic channel. This approach would possibly
avoid some compatibility problem on di�erent chipsets. However channels like PCM2,
MIC2 and others should be easily implemented to existing driver.
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5 Summary
Many ideas and development are standing behind Minix. The third edition is not just
a toy, but should be taken seriously. Perhaps the microkernels are the future of the
operating systems. Till then another research and development should be realized.
For example the layer model could be re�ned or IPC mechanism reconsidered. At the
current state of art Minix3 can be installed with advantage on embedded devices or
specialized computers. Last but de�nitely not least is the fact that Minix3 provides a
good documentation and therefore it is a good learning material for all students.

5.1 Comparison

In this section we will discuss some di�erences between microkernels and monolithic
kernels. We will go through this only brie�y because a deep analysis and comparison
would o�er enough material for whole book. When you are interested why is Linux
monolithic and Minix not, then the famous Linus vs. Tanenbaum Debate[3] is a recom-
mended reading. Since the operating systems are very complex a lot of decisions and
compromises has to be done. There are many problems which have multiple solutions
and each solution has his bene�ts and drawbacks.
As for microkernels the IPC can be a performance problem. As long as the processes
are well insulated from each other we can have a perfectly secure and modular system.
On the other hand the IPC needs some overhead, so when a lot of processes are running
or messages are send wastefully the system will get slower. In this case we trade the
security for performance.
In monolithic kernels, the IPC problem is not so serious because the data can be
exchanged inside the kernel by simple calls. High cohesion of components, vulnerability
and security issues are the price for good performance.
Hardware IPC would be possible solutions for the IPC problem. Future processor
with IPC implementation could make these operations in no-time which would greatly
enhance the performance of microkernel based systems.
As for monolithic kernels as well as for microkernels safe languages could be used to
eliminate the impacts of bad code on the system. Accessing of wrong parts of memory
or I/O ports by the application could be avoided already by the compiler.

5.2 Utilization

Minix3 is strongly recommended for academic environment. In combination with study
materials [13] Minix3 o�ers an ideal platform for courses of operating systems. Several
open source projects are available for running Minix3. Simulators like Bochs or Qemu
allow us to run Minix3 without interference with existing system or hardware. Native
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installation of Minix3 is suitable for desktop PC as well as for specialized devices.
Network components like routers or embedded applications can be build on Minix3.
The operating systems theory can be clearly demonstrated with this system. The
possibility of applying theoretical knowledge in practise should be a great motivation
for all students.

5.3 Device driver

During the process of writing device driver, we learned a lot about Minix3 and its
architecture. The work on hardware dependent part was also very interesting, especially
learning the way device works in generally and with DMA. The �nal driver works well.
It was published on the internet to be shared with the Minix3 community.
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6 Technical documentation

6.1 Installation and testing

The driver package intel8x0.tar includes:

• AC'97 Sound Driver for ICH4

• Simple mp3 player based on mp3lib

• Mixer (not completed yet)

• Playwave and recwave tools from Minix3

Installation steps:

• Unpack �le intel8x0.tar to /usr/src/drivers directory.

• Change directory to /usr/src/drivers/intel8x0 and compile the driver using
make command.

• Similarly compile mp3player, playwave and recwave tools.

• Start the driver using start.sh script.

To test the functionality we can use the playwave program which can be found in
./IBM/ or our simple mp3 player located in ./mp3player directory. You can play
some music using ./mp3play <filename.mp3> command.
Driver has been successfully tested with Minix version 3.2.1a on ICH4 chipset. It
is possible that this driver will work well with other chipsets too � meaning ICH,
ICH0, ICH3, ICH5, ICH6. The driver will automatically detect these chipsets, but the
functionality hasn't been tested yet.
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6.2 Debugging

Device driver consist of following �les:

intel8x0.tar
ac97.h......................................AC97 registers de�nitions
audio_fw.h...............................Audio framework header �le
audio_fw.c..........................Audio framework implementation
intel8x0.h........................Hardware depended part header �le
intel8x0.c...................Hardware depended part implementation
ioc_sound.h ............................ Sound ioctl() command codes

In case we want to modify or debug the driver we would need some extra output. We
can enable the debug output as well as for the audio framework as for the hardware
dependent part. To display all debug messages we use the dprint macro which is
de�ned as following:

#define dprint printf

As we can see dprint is nothing else than a printf function. If we don't want to
display debug messages, we can change the macro de�nition to:

#define dprint (void)

The dprint macro de�nition for audio framework can be found in audio_fw.h. As for
the hardware dependent part the macro is de�ned in intel8x0.c.
Similarly to dprint macro there is an error macro. It is de�ned in audio_fw.h as
following:

#define error printf

The main point of all these dprint, error macro de�nitions is to logically separate
di�erent kind of messages. The source code is also easier to maintain, because we only
need to change single line to enable or disable several output messages.
If we experiment with driver, we sometimes need to display values of all device registers.
Just for this purpose there is a function dump_regs() located in intel8x0.c, however
by default it is commented out.
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